หมายถึง เทหวัตถุในเอกภพที่มีแรงโน้มถ่วงสูงมาก ไม่มีอะไรออกจากบริเวณนี้ได้แม้
แต่แสง เราจึงมองไม่เห็นใจกลางของหลุมดำ หลุมดำจะมีพื้นที่หนึ่งที่เป็นขอบเขตของตัวเองเรียกว่าขอบฟ้าเหตุการณ์ (Event Horizon) ที่ตำแหน่งรัศมีชวาร์สชิลด์ (Schwarzchild Radius)
ถ้าหากวัตถุหลุดเข้าไปในขอบฟ้าเหตุการณ์ วัตถุจะต้องเร่งความเร็วให้มากกว่าความเร็วแสงจึง
จะหลุดออกจากขอบฟ้าเหตุการณ์ได้ แต่เป็นไปไม่ได้ที่วัตถุใดจะมีความเร็วมากกว่าแสง วัตถุนั้นจึงไม่สามารถออกมาได้อีกต่อไป เมื่อดาวฤกษ์ที่ มีมวลมหึมาแตกดับลง มันอาจจะทิ้งสิ่งที่ดำมืดที่สุด ทว่ามีอำนาจทำลายล้างสูงสุดไว้เบื้องหลัง นักดาราศาสตร์เรียกสิ่งนี้ว่า “หลุมดำ”
การเกิดหลุมดำ
การเกิดหลุมดำในเอกภพโดยทั่วไปก็คือการ เกิดการยุบตัวด้วยแรงโน้มถ่วง (Gravitational Collapse) ของดวงดาว (ดาวฤกษ์) เพราะว่าดวงดาวที่มีอยู่ในเอกภพจะอยู่ในสภาพที่มีสมดุลระหว่างแรง 2 ชนิดที่มีอยู่ในตัวมันเองก็คือ แรงผลักออกจากการที่มีปฏิกิริยานิวเคลียร์ (Nuclear Reaction) ที่อยู่ในใจกลางของดวงดาว และแรงดึงดูดเข้าสู่ศูนย์กลางที่เกิดจากขนาดของมวล (Gravitatational Pull) ซึ่งเมื่อดวงดาวได้เผาผลาญพลังงานนิวเคลียร์ภายในของมันจนหมด
แรงผลักออกก็ไม่สามารถที่จะต้านแรงดึงเข้าสู่จุดศูนย์กลางได้ ก็จึงทำให้เกิดการยุบตัวด้วยแรงโน้มถ่วงนั่นเอง ดวงอาทิตย์ของเราในระบบสุริยะก็สามารถยุบตัวเป็นหลุมดำได้ แต่ยังเป็นเวลาอีกนานมากเพราะมันจะต้องผ่านการวิวัฒนาการอีกหลายขั้นตอน โดยปกติการยุบตัวของดวงดาว
จะมีความสมมาตรเชิงทรงกลม (Spherical Symmetry) เพราะเป็นการยุบเข้าสู่ใจกลางโดยตรง
ซึ่งก็จะเกิดเป็นหลุมดำชนิดที่ง่ายที่สุดที่เรียกว่า หลุมดำชว๊าซชิลด์ (Schwarzschild Black Holes)
ถ้าการยุบตัวของหลุมดำมีประจุติดไปด้วยและยังมีความสมมาตรเชิงทรงกลม เราจะได้หลุมดำ
ที่เรียกว่า หลุมดำไรส์เนอร์-นอร์ดสเตริม (Reissner-Nordstrom black holes) และถ้าในระหว่าง
การยุบตัวมีการหมุนเข้ามาเกี่ยวข้อง ผลลัพธ์ที่ได้จะเป็นหลุมดำเคอร์ (Kerr black hole) และ
ถ้าการยุบตัวแบบนี้มีประจุรวมอยู่ด้วยเราจะเรียกมันว่าหลุมดำเคอร์-นิวแมน (Kerr-Newman black hole) สำหรับการยุบตัวที่ไม่มีสมมาตรเชิงทรงกลม (non-spherical symmetry) จะเกิดการแผ่คลื่นแรงโน้มถ่วง (gravitational waves)
ชื่อของหลุมดำ ประจุ (Q) โมเมนตัมเชิงมุม (L)
หลุมดำชวาซชิลด์ (Schwarzschild black holes) ไม่มี ไม่มี
หลุมดำเคอร์ (Kerr black holes) ไม่มี มี
หลุมดำไรส์เนอร์-นอร์ดสเตริม (Reissner-Nordstr?m black holes) มี ไม่มี
หลุมดำเคอร์-นิวแมน (Kerr-Newman black holes) มี มี
ประเภทของหลุมดำ
1.หลุมดำจิ๋ว (Mini black holes) หลุมดำพวกนี้ มีขนาดราว 10-15 เมตรเป็นหลุมดำที่มีมวลเพียงไม่กี่ร้อยล้านตัน มีขนาดเล็กเพียงขนาดของอะตอมเท่านั้น เกิดขึ้นหลังจากเกิดบิ๊กแบงได้
ไม่นาน หลุมดำชนิดนี้จะมีอายุสั้นและจะสลายตัวด้วยการระเบิด แล้วปลดปล่อยรังสีแกมมาออกมา
2.หลุมดำที่เกิดจากวิวัฒนาการของดวงดาวหรือหลุมดำที่ เกิดจากดาวฤกษ์ที่ตายแล้ว(Stellar black holes) เมื่อดาวฤกษ์ที่มวลมาก ๆ ถึงคราวหมดอายุไข จะเกิดการระเบิดเป็น
ซูเปอร์โนวา หากหลังการระเบิดยังหลงเหลือมวลสารที่ใจกลางของดาวมากกว่า 3 เท่าของ
ดวงอาทิตย์ มวลใจกลางดาวนั้นจะยุบตัวต่อลงเป็นหลุมดำ หลุมดำประเภทนี้เกิดจากดาวยักษ์แดง (Red giant stars) ที่มีมวลมากกว่า 3 เท่าของ มวลของดวงอาทิตย์ตามวิวัฒนาการของดวงดาว (Stellar evolution) ส่วนดาวที่มีมวลน้อยกว่านี้ก็จะวิวัฒนาการไปสู่ ดาวแคระขาว (white dwarfs) หรือ ดาวนิวตรอน (neutron stars) หลุมดำประเภทนี้เกิดจากการที่ดาวฤกษ์เผาผลาญพลังงาน
ทุกอย่าง จนหมดสิ้นทำให้เกิดการยุบตัวเป็น singularity (หมายถึงบริเวณที่เป็นอนันต์)
ซึ่งถือว่าเป็นจุดตรงกลางของหลุมดำ ในทฤษฎีสัมพัทธภาพพิเศษของไอสไตน์ singularity
จะเกิดขึ้นได้เมื่อดวงดาวได้ยุบตัวจนถึง รัศมีชว๊าซชิลด์ (Schwarzschild radius) หรือ เรียกว่า ขอบเขตแห่งเหตุการณ์ (Event horizon) ซึ่งเป็นขอบเขตที่ไม่มีอะไรสามารถ หลุดพ้นออกมาได้ (ยกเว้นแต่ว่าใครจะทำความเร็วได้มากกว่าความเร็วแสง แต่ความเป็นไปได้ก็ถูกจำกัดโดยทฤษฎีสัมพัทธภาพพิเศษของไอสไตน์ที่กล่าวว่า ไม่มีสิ่งใดที่สามารถเคลื่อนที่ได้เร็วกว่าความเร็วแสง )
3.หลุมดำยักษ์หรือหลุมดำมวลยิ่งยวด(Supermassive black holes) หลุมดำจำพวกนี้
จะมีมวลมากมายมหาศาล อาจมีมวลมากนับเป็นหลายพันล้านเท่าของดวงอาทิตย์ ส่วนใหญ่
จะพบหลุมดำมวลยิ่งยวดอยู่ใจกลางของควอซ่าร์ (Quasars) ซึ่งเป็นใจกลางของ galaxy
ที่มีการระเบิดเกิดขึ้น และมันดูดดาวจำนวนนับพันล้านดวง รวมถึงก๊าซและฝุ่น ในอวกาศ
หรือแม้กระทั่งดาวเคราะห์เข้าไป ด้วยเหตุนี้จึงเรียกว่าหลุมดำมวลยิ่งยวด
4.ผลของการตกลงไปในหลุมดำ ในส่วนนี้จะเป็นการอธิบายว่าจะเกิดอะไรขึ้นถ้ามีบางสิ่งตกลงไปในหลุมดำชวาร์สชิลด์ ที่เป็นเป็นไม่หมุนและไม่มีประจุ ส่วนหลุมดำที่หมุนและมีประจุ
จะมีความยุ่งยากที่เพิ่มขึ้นมาเมื่อตกลงไป
กระบวนการสปาเกตตี้
วัตถุที่อยู่ภายใต้แรงดึงดูดขนาดใหญ่ จะสัมผัสได้ถึงแรงไทดอล(tidal force) ที่ทำให้มัน
ไปในทิศทางของวัตถุที่ก่อให้เกิดสนามโน้มถ่วง นี่อาจจะเกิดจากกฎกำลังสองผกผันทำให้ส่วน
ที่ใกล้กว่าของวัตถุที่ถูก แผ่ออกสัมผัสกับแรงดึงดูดได้เร็วกว่าส่วนที่อยู่ไกลกว่า ใกล้ ๆ กับหลุมดำ แรงไทดอลจะถูกคาดหวังว่าจะเพียงพอที่จะทำให้วัตถุตกลงไป ไม่ว่าจะเป็นอะตอม
หรือนิวคลีออน เรียกปรากฏการณ์นี้ว่ากระบวนการสปาเกตตี้(spaghettification) กระบวน
การสปาเกตตี้ นี้จะเริ่มจากวัตถุที่ตกลงไปในหลุมดำจะแยกเป็นสองส่วน และจากนั้นแต่ละส่วน
ก็จะแยกออกเป็นอีกสองส่วนรวมเป็นสี่ แล้วก็แยกเป็นแปด กระบวนการแยกออกเป็นสอง (bifurcation) นี้จะดำเนินไปเรื่อย ๆ และผ่านจุดที่จะแยกวัตถุต้นแบบในระดับอะตอม และสุดท้ายกระบวนการนี้จะทำให้วัตถุกลายเป็นสตริงของอนุภาคพื้นฐาน
ความแรงของ tidal force ของหลุมดำขึ้นกับค่าความโน้มถ่วงนั้นเปลี่ยนแปลงระยะอย่างไรมากกว่าที่จะคิดถึง แรงสัมบูรณ์ที่ตกลงไป นั่นหมายความว่าหลุมดำขนาดเล็กจะเกิดปรากฏการณ์สปาเกตตี้เมื่อวัตถุที่ตกลง ไปนั้นยังอยู่ภายนอกขอบฟ้าเหตุการณ์ ขณะที่วัตถุที่ตกลงไปในหลุมดำขนาดใหญ่นั้นอาจไม่ผิดแผลกแตกต่างไป หรืออาจจะไปสัมผัสแรงขนาดใหญ่ที่ผ่านขอบฟ้าเหตุการณ์ไป
-ก่อนที่วัตถุที่ตกลงไปจะข้ามขอบฟ้าเหตุการณ์ วัตถุที่อยู่ในสนามความโน้มถ่วงจะมีเวลาที่ช้าลงเรียกว่าการยืดของช่วงเวลาจากความโน้มถ่วง และมีลักษณะที่แดงและมืดทึบลงเนื่องจากเกิดการเลื่อนของสเปกตรัมไป ในทิศทางที่มีความยาวคลื่นเพิ่มขึ้น เรดชิฟท์ที่เกิดขึ้นโดยความโน้มถ่วงจากหลุมดำ ในที่สุดวัตถุนั้นจะค่อนข้างมืดลงไปจนไม่สามารถมองเห็นได้
-อะไรทำให้สสารหลุดจากหลุมดำไม่ได้ วัตถุสามารถเคลื่อนที่ ในทิศทางใดก็ได้เมื่อ
อยู่ห่างจากหลุมดำ ภายใต้ความเร็วแสง ยิ่งใกล้หลุมดำเข้ามาพื้นผิวจะเริ่มบิดเบี้ยว ทางที่จะเข้าสู่หลุมดำจะมีมากกว่าทางที่จะหลุดออกจากหลุมดำ ภายในขอบฟ้าเหตุการณ์ เส้นทางทั้งหมด
จะดึงอนุภาคเข้าใกล้ศูนย์กลางของหลุมดำ ไม่มีความเป็นไปได้ที่จะหลุดออกมาได้อีก เหตุผลที่นิยมจะนำมาอธิบายปรากฏการณ์หลุมดำก็คือแนวคิดเกี่ยวกับความเร็วหลุดพ้น ความเร็วนี้เป็นที่ต้องการสำหรับการเริ่มต้นที่ผิวของวัตถุขนาดใหญ่เพื่อที่ จะหลุดจากสนามโน้มถ่วงของวัตถุใด ๆ แนวคิดนี้มาจากกฎความโน้มถ่วงของนิวตันที่ความเร็วหลุดพ้นของวัตถุหนาแน่น
เพียงพอจะเท่ากับหรือมากกว่าความเร็วแสง มีการกล่าวอ้างว่าไม่มีอะไรที่จะมากกว่าความเร็วแสงได้ จึงสรุปได้ว่าไม่มีสสารใดจะสามารถหนีจากวัตถุที่หนาแน่นขนาดนี้ได้
เนบิวลา(Nebula) คือกลุ่มของก๊าซและฝุ่นผงที่รวมตัวกันอยู่ในอวกาศ เนบิวล่ามาจาก
ภาษาลาตินแปลว่า "เมฆ" เพราะเมื่อเราใช้กล้องโทรทรรศน์ส่องดู จะเห็นเป็นฝ้าขาวคล้ายกลุ่มเมฆ เนบิวล่าเป็นวัตถุหนึ่งในเอกภพที่มีความสำคัญมากๆ เพราะดาวฤกษ์หรือดาวเคราะห์ล้วนเกิดขึ้น มาจากเนบิวล่าทั้งสิ้น เนบิวล่าที่เราเห็นนั้นความจริงมีขนาดใหญ่โตมโหราฬมาก บ้างก็มีเส้นผ่าศูนย์กลางถึง 10 ปีแสง บ้างก็ใหญ่กว่าระบบสุริยะของเราถึง 10 เท่า เช่นเนบิวล่าสว่าง M42 ในกลุ่มดาวนายพราน ซึ่งกำลังก่อตัวให้เกิดระบบสุริยะใหม่ สามารถก่อกำเนิดดาวฤกษ์ใหม่ได้
นับพันดวง และเนบิวล่าส่วนใหญ่จะไกลจากเรามากนับ 10 นับ 100 ปีแสง แต่ไม่ไกลเกิน
ระบบทางช้างเผือกของเรา เพราะเนบิวล่าเป็นสมาชิกส่วนหนึ่งของกาแลกซี่ทางช้างเผือก
กำเนิดของเนบิวล่านั้นนักวิทยาศาสตร์เชื่อว่ามีด้วยกันหลายสาเหตุ แต่ในเบื้องต้น
คาดว่าจะเกิดขึ้นมาพร้อมกับกำเนิดของเอกภพที่จะก่อกำเนิดดาวฤกษ์รุ่นแรก และ เกิดจาก
การแตกดับของดาวฤกษ์รุ่นแรก ที่ทิ้งซากไว้เพื่อรอการกำเนิดเป็นดาวฤกษ์ ขั้นที่สองอีกครั้ง
เราแบ่งเนบิวล่า ออกเป็น 4 กลุ่มใหญ่คือ
1. Emission nebulae หรือเนบิวล่ามีแสงในตัวเอง
2. Reflective nebulae หรือเนบิวล่าสะท้อนแสง
3. Planetary nebular หรือเนบิวล่าดาวเคราะห์
4. Dark nebulae หรือ เนบิวล่ามืด
เนบิวลาสว่าง
เนบิวลาสว่างนั้นถูกแบ่งออกเป็น 2 แบบคือ
Emission nebulae หรือ เนบิวลามีแสงในตัวเอง
Reflective nabulae หรือ เนบิวลาสะท้อนแสง เนบิวลาทั้งสองแบบนั้นค่อนข้างจะแยกออกจากกันลำบาก เพราะมีลักษณะคล้ายกันมาก และบางครั้งอาจอยู่ปะปนกัน เหตุที่เรียก Emission nebulae ว่า เนบิวลาสว่าง เพราะเนบิวล่าแบบนี้จะเรืองแสงขึ้นเอง เมื่ออะตอมของมวลสารที่อยู่ในเนบิวลา ถูกกระตุ้นด้วยพลังงานจากดาวฤกษ์ที่อยู่ใกล้ๆ ก๊าซส่วนใหญ่ในเนบิวล่าจะเป็นอะตอมไฮโดรเจน ซึ่งจะปล่อยแสงสีแดง กับอะตอมของออกซิเจนซึ่งให้แสงสีเขียว และอะตอมของไฮโดรเจนมัก
จะรวมตัวกับอะตอมของออกซิเจน แล้วจะปล่อยสีผสมระหว่างแดงกับเขียวคือสีเหลืองออกมา
ส่วนReflective nabulae หรือ เนบิวลาสะท้อนแสง นั้นจะเป็นองค์ประกอบของฝุ่นผงเป็นส่วนใหญ่คล้ายควันบุหรี่ ซึ่งจะให้แสงสีน้ำเงินออกมา
เนบิวลาดาวเคราะห์
Planetary nebulae หรือ เนบิวลาดาวเคราะห์
เป็นเครื่องหมายบ่งบอกถึงมรณะกรรมของดาวฤกษ์ที่มีขนาดเท่ากับดวงอาทิตย์ของเรา เมื่อถึง
ช่วงสุดท้ายอายุของ ดาวฤกษ์ ดาวฤกษ์จะหดตัวอย่างรวดเร็วเพราะแรงนิวเคลียร์ไม่มีที่จะต่อต้าน
แรงโน้มถ่วงที่มากมายมหาศาลได้ แกนกลางจนหดตัวเป็นดาวแคระ จนมีขนาดเล็กเท่าดาวเคราะห์ แล้วปลดปล่อยเปลือกนอกของดาวให้ ฟุ้งกระจายไปในอวกาศ ไกลหลายล้านไมล์
Planetary nebulae ในเอกภพนั้นมีเยอะแยะมากมาย เพราะดาวฤกษ์ส่วนใหญ่จะมีขนาดเท่ากับ
ดวงอาทิตย์ แต่เป็นที่น่าประหลาดใจมากว่า รูปร่างของ Planetary nebular กลับมีหลากหลาย
แต่รูปแบบแท้จริงแล้ว จะคล้ายกับ helix nebulae ที่สุ
เนบิวลามืด
Dark nebulae หรือเนบิวลามืด
โดยทั่วไปเนบิวลามืดมักจะอยู่รวมกับเนบิวลาสว่าง หรือ เนบิวลาสะท้อนแสง เพราะเราจะ สามารถมองเห็นเนบิวลามืดได้เพราะ ส่วนที่เป็นเนบิวลามืดนั้นจะดูดกลืนแสงจากฉากด้านหลัง ไม่ให้มาเข้าตาเรา คล้ายกับว่ามีวัตถุทึบแสงกันอยู่ ซึ่งอาจจะเป็นฝุ่นผงที่หนาทึบมากๆ ตัวอย่างที่เห็นได้ชัดเจนได้แก่ เนบิวลามืดรูปหัวม้า (B33) ในกลุ่มดาวนายพราน (Orion)
นักดาราศาสตร์ใช้คำว่า เนบิวลา เรียกชื่อสิ่งที่ปรากฏเป็นเมฆหมอกฝ้าอยู่คงที่ท่ากลางดวงดาวบนท้องฟ้า อาจจะปรากฏสว่างเรืองหรือมืดสนิทก็ได้ เรามองเห็นเนบิวลาได้ยาก เพราะแม้แสง
ที่สว่างก็มีแสงจางแผ่กระจายไม่รวมกันเข้มเป็นจุดสว่างดังเช่นดาวฤกษ์ เราจึงสามารถมองเห็นเนบิวลาบนท้องฟ้าด้วยตาเปล่าได้เพียง 4 แห่งในขณะซึ่งสามารถมองเห็นดาวฤกษ์ด้วยตาเปล่าถึง 5,000 ดวง ความจริงเนบิวลามีอยู่จริงเป็นปริมาณไม่น้อย การที่เราจะตรวจพบหรือไม่ขึ้นอยู่กับความไวของอุปกรณ์ที่ใช้ เนบิวลาที่ทอยู่ในระบบทางช้างเผือกของเรา เรียกว่า Galactic Nebula
ซึ่งเป็นกลุ่มก๊าซที่มีความสัมพันธ์ทางใดทางหนึ่งกับดาวฤกษ์ในกาแลกซี ซึ่งดวงอาทิตย์ของเราเป็นสมาชิกหน่วยหนึ่ง ตัวอย่างของ Galactic Nebula ชนิดแผ่กระจาย ได้แก่ กลุ่มที่อยู่ในกลุ่มดาว Orion นับเป็นกลุ่มก๊าซและฝุ่นซึ่งใหญ่โตกลุ่มหนึ่งในกาแลกซี กินอาณาเขตกว้างขวางในอวกาศ แผ่คลุมดาวฤกษ์อยู่ภายในองค์ประกอบสำคัญ คือก๊าซไฮโดรเจน ฮีเลียม มากที่สุด และนอกจากนั้นก็มีออกซิเจน และไนโตรเจน เป็นต้น เนบิวลานี้เรืองแสงเพราะถูกกระตุ้นด้วงรังสีอุลตราไวโอเลตจากดาวฤกษ์ที่ร้อนจัดซึ่งอยู่ภายใน และบางส่วนของก๊าซและฝุ่นที่ห่างดาวฤกษ์ร้อนและไม่เปล่งแสงเรืองจะบังคับแสงดาวฤกษ์ที่อยู่เบื้องหลังไกลออกไป จึงปรากฏเป็นเนบิวลามืดGalactic Nebula ชนิดเป็นดวงนั้นเป็นกลุ่มก๊าซรูปทรงกลมซึ่งแผ่กระจายออกมาจากการระเบิดของดาวฤกษ์ และปรากฏให้เห็นหลายดวงบนท้องฟ้า เช่นที่เรียกกันว่า เนบิวลาวงแหวน เนบิวลาปู เนบิวลา
นกฮูก ตามความคล้ายคลึงกับรูปสิ่งของ สัตว์ที่มนุษย์คุ้นเคยกันทั่วไป
เนบิวลานอกกาแลกซีหรือ Spiral Nebula นั้น เป็นวัตถุจำพวกที่อยู่ไกลห่างออกไปนอกกาแลกซีของเรา เป็นต้นว่า เมฆแมกเจลแลน (Magellanic Clouds) ซึ่งเห็นได้ด้วยตาเปล่าบนท้องฟ้าของ
ซีกโลกภาคใต้ อยู่ห่างไปขนาดแสงสว่างซึ่งเดินทางได้วินาทีละ 300,000 กิโลเมตร ต้องใช้
เวลาเดินทาง 150,000 ปี จึงจะถึงซึ่งเรียกว่าอยู่ห่างไป 150,000 ปีแสง หรือ Spiral Nebula ในทิศทางของกลุ่มดาว Andromeda อยู่ห่างไปถึง 2,200,000 ปีแสง Spiral Nebula มีอยู่มากมาย ตั้งแต่ที่มองเห็นด้วยตาเปล่า จนที่ไกลออกไปแสงริบหรี่ ต้องสำรวจด้วยกล้องโทรทรรศน์ใหญ่ที่สุดในโลก โดยถ่ายภาพเปิดหน้ากล้องนานนับชั่วโมง เท่าที่บันทึกทำทะเบียนไว้ ถึงขนาดความสว่างแมกนิจูดที่ 15 มีถึง 16,000 เนบิวลา เชื่อว่าถ้านับถึงที่แสงหรี่ถึงขนาดแมกนิจูดที่ 23 ซึ่งหรี่ที่สุดที่กล้องโทรทรรศน์ในโลกจะสำรวจได้คงจะมีปริมาณถึง 1,000,000,000 เนบิวลา
ผลการศึกษาค้นคว้าทางดาราศาสตร์ แสดงว่า Spiral Nebula แต่ละดวงก็คือระบบใหญ่ของ
ดาวฤกษ์ ฝุ่น และก๊าซ ดังเช่นกาแลกซีทางช้างเผือกของเรานี้เอง ถ้าเราออกไปอยู่บนดาวฤกษ์ดวงใดดวงหนึ่งในระบบ Spiral Nebula ของกลุ่มดาว Andromeda แล้วมองกลับมายังกาแลกซีของเรา
ก็จะเห็นกาแลกซีมีรูปลักษณะคล้ายคลึงกับที่เราเห็น Spiral Nebula นั่นเอง ดังนั้น Spiral Nebula หรือเนบิวลานอกกาแลกซีก็คือระบบใหญ่ของดาวฤกษ์ ฝุ่นและก๊าซ ซึ่งแต่ละระบบระมีดาวฤกษ์คิดเฉลี่ยประมาณ 800,000,000 ดวง กาแลกซีของเราเป็น Spiral Nebula ค่อนข้างใหญ่มีดาวฤกษ์ประมาณ 100,000,000,000 ดวง
ดาวฤกษ์ เป็นมวลก๊าซที่ลุกโชติช่วง ( incandescent gas ) และกระจายอยู่ทั่วทั้งเอกภพในระยะที่ห่างกันพอได้สมดุลพอดี เราอาจจุเห็นดาวฤกษ์หลายดวงอยู่กันเป็นกลุ่มในท้องฟ้ายามราตรีในรูปของจุดแสงเล็กๆ บางดวงก็มีแสงสุกใสสว่างกว่าดวงอื่น ๆ แต่นั้นก็เป็นเพียงรูปโฉมภายนอกเท่านั้น ทั้งนี้เพราะความสว่างที่เห็นนั้นขึ้นอยู่กับระยะทางที่ดาวฤกษ์ดวงนั้นๆ
อยู่ห่างจากโลก อายุขัยของดาวฤกษ์แต่ละดวงไม่เท่ากัน ทว่ามันก่อเกิดขึ้นเติบโต และดับไปในที่สุดเหมือนๆกัน ดาวฤกษ์บางดวง เช่น ดวงอาทิตย์ มีดาวบริวารที่เรียกว่า
ดาวเคราะห์ ( planet ) หลายดวงซึ่งแต่ละดวงหมุนรอบตัวเองและโคจรอยู่รอบดาวฤกษ์ดวงนั้นๆ
ความสว่างกับขนาด (BRIGHTNESS AND SIZE)
เมื่อเราดูดาวฤกษ์ในตอนกลางคืน จะเห็นว่าบางดวงมีแสงสว่างกว่าดวงอื่น ๆ แต่นั้นเป็นสิ่งที่เราเห็นภายนอกเท่านั้น แท้ที่จริงความสว่าง (brightness) ที่เราเห็นขึ้นอยู่กับขนาด(size)
ที่มีมาแต่ดั้งเดิมของดาวฤกษ์ดวงนั้น ๆ และขึ้นอยู่กับว่ามันอยู่ไกลจากเราเท่าใดด้วย ด้วยเหตุนี้เราจึงเห็นดาวฤกษ์ดวงที่มีขนาดใหญ่มากและมีแสงสุกใสสว่างมากกลับมีความสว่างน้อยกว่าที่ควรจะเห็น และเห็นดาวฤกษ์ดวงที่มีขนาดเล็กและมีแสงไม่สุกใสสว่างมากนักแต่อยู่ใกล้เรามากกว่ากลับมีความสว่างมาก ทำให้ต้องมีการกำหนดขนาดที่ปรากฏ (apparent size – ความสว่างที่เห็น )
กับขนาดสัมบูรณ์ ( absolute size - ขนาดจริง ) ของดาวฤกษ์แต่ละดวงนั้น
สีของดาวฤกษ์ (THE COLOR OF STARS )
ถ้าเราดูให้ดีแล้วจะเห็นว่าดาวฤกษ์แต่ละดวงนั้นมีสีไม่เหมือนกันแต่เดิมนั้นมีการจำแนกสีดาวฤกษ์ออกเป็น 4 ประเภท คือ แดง ส้ม เหลือง และขาว แต่ละสีแทน อุณหภูมิของ
ดาวฤกษ์ สีขาวแทนดาวฤกษ์ที่ร้อนจัดที่สุด ส่วนสีแดงแทนดาวฤกษ์ที่ร้อนน้อยที่สุดการให้สีอย่างนี้ก็คล้ายกับสีของชิ้นเหล็กที่กำลังถูกไฟเผา ในตอนแรกมันจะร้อนแดงก่อน ต่อมาเมื่ออุณหภูมิสูงขึ้นสีของมันก็จะเปลี่ยนไปเรื่อยๆ จนกระทั่งเป็นสีขาวแกมน้ำเงินในที่สุดแต่นักดาราศาสตร์ปัจจุบันได้จำแนกสีของดาวฤกษ์ตามอุณหภูมิของมันเป็น 7 ประเภทใหญ่ๆ
ประเภท สี อุณหภูมิ ( ํ F)
O น้ำเงิน - ม่วง 50,000 - 90,000
B น้ำเงิน - ขาว 18,000 - 50,000
A ขาว 13,500 - 18,000
F ขาว - เหลือง 10,800 - 13,500
G เหลือง 9,000 - 10,800
K ส้ม 6,300 - 9,000
M แดง 4,500 - 6,300
การก่อเกิดขึ้นของดาวฤกษ์ (THE BIRTH OF A STAR)
ในอวกาศเต็มไปด้วยอนุภาพจิ๋วๆของอะตอมและสสารต่าง(atoms and matter ) แพร่กระจายอยู่ทั่วไปเหมือนฝุ่นผงธุลีที่ล่องลอยอยู่ในอากาศในที่บางแห่งอาจมีเพียง 3 อะตอม ต่อ 1 ลูกบาศก์เมตร แต่ในบางแห่งอาจมีเนื้อสารมากพอที่จะก่อให้เกิดการรวมตัวควบแน่นกันขึ้น ณ จุดจุดหนึ่งอย่างช้า ๆ ดาวฤกษ์ก่อเกิดขึ้นจากการที่ธุลีที่ล่องลอยอยู่นั้นจับตัวกันขึ้นเป็นกลุ่มก้อนเท่าปลายเข็มก่อน ต่อมาเมื่อมีธุลีจับตัวกันทำให้มีมวลเพิ่มมากขึ้นจนได้ขนาด ภายในดาวฤกษ์ดวงนั้นก็จะเริ่มร้อนขึ้นๆ ซึ่งอาจจะร้อนขึ้นได้เป็นหลายล้านองศา พอถึงจุดนี้ดาวฤกษ์ดวงนั้นก็เริ่มเปล่งแสง ซึ่งเราเรียกได้ว่าดาวฤกษ์ดวงนั้นได้ก่อเกิดขึ้นแล้ว
การเติบโตและการดับ (GROWTH AND DEATH)
ใจกลางของดาวฤกษ์กอปรด้วยไฮโดรเจนเป็นส่วนใหญ่ซึ่งเป็นเชื้อเพลิงที่ทำให้มัน
ลุกโชติช่วงอยู่ได้ เมื่อไฮโดรเจน (hydrogen) หมดสิ้นดาวฤกษ์ดวงนั้นก็เริ่มเสื่อมลงโดยมันจะเริ่มหดตัวลงและพันธะระหว่างอะตอมต่าง ๆ ก็สลายลงด้วย ดาวฤกษ์ดวงนั้นก็จะมีสภาพเหมือน “ซุปอิเล็กตรอน” ( electron soup) ที่มีแต่นิวเคลียสของอะตอมชนิดต่างๆ พอถึงช่วงนี้ดาวฤกษ์ดวงนั้นก็ยังเปล่งแสงอยู่แต่จะเริ่มเย็นลง ในระยะนี้มันจะให้ฮีเลียม(ซึ่งมีอยู่น้อยกว่ามาก) เป็นเชื้อเพลิง เมื่อถึงวาระสุดท้ายมันก็จะ “ระเบิด” และเปล่งแสงออกมาอีกครั้งก่อนที่จะแตกเป็นอนุภาคและเศษเล็กเศษน้อยกลายเป็นกลุ่มเมฆของสสารระหว่างดวงดาวคล้ายกับควันที่เกิดขึ้นหลังการระเบิด
ดาวฤกษ์ : จากโรงงานธาตุสู่หลุมดำ ( Stars : from elecment factories to black holes)
มีปรากฏการณ์ที่สำคัญมากต่อเอกภพโดยรวมเกิดขึ้นหลายอย่างภายในดาวฤกษ์ อันนี้รวมถึงการสร้างธาตุต่าง ๆ ทางเคมี (chemiscal elecments ) ที่ก่อให้เกิดสสารขึ้น - หรืออีกนัยหนึ่งคือ การหลอมนิวเคลียส และดาวฤกษ์ยังเป็นแหล่งก่อเกิดปรากฏการณ์ในเอกภาพที่ลึกลับและน่าหวั่นกลัวเป็นอย่างยิ่งอีกอย่างหนึ่งด้วยนั้นคือ หลุมดำ
ธาตุต่างๆ ทางเคมี
ดาวเคราะห์ หินต่าง ๆ อากาศ และสิ่งมีชีวิตทั้งปวงล้วนกอปรขึ้นด้วยธาตุต่าง ๆทางเคมี ธาตุบางธาตุพบได้ในสภาพอิสระ เช่นธาตุออกซิเจน (มีอะตอมของออกซิเจน 2 อะตอมเชื่อมต่อกันอยู่) ซึ่งเป็นส่วนประกอบของอากาศที่เราหายใจเข้าไป แต่มีธาตุอีกมากที่ปรากฏในสภาพที่เชื่อมต่อกันเป็นสารประกอบทางเคมี เช่น น้ำ (ซึ่งกอปรขึ้นด้วยไฮโดรเจน 2 อะตอมกับออกซิเจน 1 อะตอม) ไฮโดรเจนเป็นธาตุที่มีองค์ประกอบอย่างง่ายที่สุด ถัดมาก็คือ ฮีเลียม ทั้งสองธาตุนี้เป็นธาตุที่มีอยู่เป็นจำนวนมากที่สุดในเอกภพ และเป็นธาตุที่ก่อเกิดขึ้นเป็นลำดับแรก ๆ ด้วย ส่วนธาตุอื่น ๆ ก็ล้วนก่อเกิดขึ้นภายในดาวฤกษ์ต่าง ๆ ที่มีลักษณะคล้ายกับว่าเป็นโรงงานที่ผลิตธาตุต่างๆ ทางเคมีนั้นเอง
การเผาไหม้ของดาวฤกษ์
เมื่อเรามองขึ้นไปบนฟ้าเราจะเห็นดาวฤกษ์เป็นเพียงจุดขนาดจิ๋วที่มีแสง แสงดังกล่าวเป็นพลังงานที่เกิดขึ้นภายในดาวฤกษ์ด้วยกระบวนการที่เรียนกว่า การหลอมนิวเคลียส กระบวนการนี้เกี่ยวข้องกับการหลอมรวมอะตอมตั้งแต่ 2 ชนิดขึ้นไปเข้าด้วยกันเพื่อผลิตอะตอมใหม่ 1 อะตอมที่มวล ของมันมีน้ำหนักน้อยกว่าน้ำหนักรวมของอะตอมทั้งหมดที่ก่อให้เกิดอะตอมใหม่นั้นอยู่เล็กน้อย ส่วนที่หายไปเล็กน้อยนั้นก็คือเนื้อสารส่วนที่เปลี่ยนไปเป็นพลังงาน พลังงานดังกล่าวหลุดออกไปจากดาวฤกษ์ในรูปของแสงที่เรามองเห็นได้จากโลก
หลุมดำ
ในเอกภพอันไกลโพ้น นักดาราศาสตร์จำนวนมากได้สังเกตการณ์พบว่ามีบางบริเวณที่พวกเขาใช้กล้องโทรทรรศน์ส่องดูแล้วไม่เห็นว่ามีสิ่งใดปรากฏขึ้นบนจอภาพเลย แต่จากการคำนวณกลับชี้ว่าต้องมีสิ่งหนึ่งสิ่งใดอยู่ในบริเวณนั้นอย่างแน่นอน และเพราะการที่ไม่มีภาพใดปรากฏบนจอภาพนี้เองนักวิทยาศาสตร์จึงได้เรียกบริเวณนั้นว่าหลุมดำ หลุมดำทั้งหลายเป็นที่ที่ลึกลับแต่จากการศึกษากันอย่างกว้างขวางพบว่าในบริเวณนั้นมีดาวฤกษ์โปรตอน อยู่หลายดวงซึ่งเป็นดาวฤกษ์ที่มีความหนาแน่นมากจนกระทั่งแรงโน้มถ่วงของมันสามารถดึงดูดพลังงานทุกชนิดไว้ได้ แม้กระทั่งแสงก็ไม่สามารถจะหลุดออกมาได้เลย
ประเภทของดาวฤกษ์
แม้ว่าในทางทฤษฎี ดาวฤกษ์ต่างๆ ก็ล้วนแต่เหมือนๆ กันทั้งนั้น แต่สิ่งที่ทำให้มันดูต่างกันก็คืออายุ ขนาด และวิวัฒนาการ ดังนั้น จึงสามารถจัดเป็นประเภทๆ ได้ตามที่นักดาราศาสตร์สมัครเล่นจะสามารถสังเกตการณ์ดาวฤกษ์ต่าง ๆ เหล่านั้นได้ด้วยการใช้กล้องโทรทรรศน์ขนาดเล็ก ประเภทของดาวฤกษ์ที่สำคัญ ได้แก่ ดับเบิลสตาร์ แวริเบิลสตาร์ โนวา ซูเปอร์โนวา
พัลซาร์ และ ควาซาร์
ดับเบิลสตาร์
มีอยู่หลายแห่งในอวกาศที่มีดาวฤกษ์ซึ่งต่างผลัดกันโคจรรอบกันและกันเป็นคู่แฝดโดยมีศูนย์กลางของความถ่วงเดียวกัน ดาวฤกษ์ที่มีลักษณะเช่นนี้เรียกว่า ดับเบิลสตาร์ ดาวฤกษ์คู่แฝดเหล่านี้ก่อเกิดมาจากมวลของสสารในอวกาศกลุ่มเดียวกันด้วยการควบแน่นแล้วแยกออกเป็นดาวฤกษ์ 2 ดวง
แวริเบิลสตาร์
มีดาวฤกษ์หลายดวงที่มีแสงไม่คงที่ โดยระดับแสงจะเปลี่ยนไปเป็นช่วง ๆ แต่ละช่วงอาจสั้นแค่ 2-3 เดือน หรืออาจนานเป็นหลาย ๆ ปีก็ได้ ดาวฤกษ์ประเภทนี้เรียกว่า แวริเบิลสตาร์ ซึ่งความสว่างไม่คงที่เป็นช่วงเวลาที่ไม่เท่ากันของดาวฤกษ์ประเภทนี้เกิดขึ้นเนื่องจากมีการเปลี่ยนแปลงบางอย่างภายในดวงดาวนั้นเอง ต่างจากความสว่างไม่คงที่ของดาวฤกษ์ประเภทที่ต่างผลัดกันโคจรรอบกันและกันแล้วทำให้เกิดเงามืดทับกันและกันเป็นช่วงเวลาที่สม่ำเสมอซึ่งมองเห็นได้จากโลก
โนวา
ในดาวฤกษ์ที่อยู่กันเป็นคู่ ระหว่างดาวแคระแดง ดวงหนึ่ง กับดาวยักษ์ขาว อีกดวงหนึ่งนั้น ในบางครั้งแรงดึงดูดที่แรงจัดของดาวแคระแดงได้ดึงเอาไฮโดรเจนมาจากดาวยักษ์ขาว
ซึ่งเชื้อเพลิงส่วนที่เพิ่มขึ้นนี้จะลุกไหม้ทำให้เกิดแสงสว่างจัดจ้าววูบขึ้นเป็นเวลาหลายชั่วโมง
ดาวแคระแดงที่เกิดแสงสว่างจัดจ้าวูบขึ้นนี้เรียกว่า โนวา
ซูเปอร์โนวา
ในช่วงสุดท้ายของชีวิต ดาวฤกษ์ต่าง ๆ จะมีสีแดง ดาวฤกษ์ยักษ์ จะระเบิดขึ้นอย่าง
น่าระทึกใจ และมีขนาดใหญ่ขึ้นกว่าเดิมหลายพันเท่า การระเบิดนี้เป็นผลจากปฏิกิริยานิวเคลียร์ต่าง ๆ ที่เกิดขึ้นภายในดาวฤกษ์ดวงนั้น เมื่อดาวฤกษ์ดวงนั้นใช้ไฮโดรเจนที่มีอยู่หมดลงและมีธาตุใหม่ที่หนักกว่าเกิดขึ้น มวลที่ใหญ่โตเหลือล้นนั้นทำให้เกิดการระเบิดขึ้นภายในตัวมันเองก่อนแล้วทำให้เกิดการระเบิดออกภายนอกตามมา ส่งผลให้สสารของมันพุ่งกระจายออกสู่อวกาศด้วยความเร็วเหลือที่จะพรรณนาได้
พัลซาร์
เป็นดาวฤกษ์นิวตรอนที่ก่อเกิดขึ้นเมื่อสิ้นสุดชีวิตของดาวฤกษ์ยักษ์หลังการระเบิด ดาวฤกษ์ประเภทพัลซาร์หมุนรอบตัวเองด้วยความเร็วสูง (ถึง 600 รอบต่อวินาที)และสนามแม่เหล็กของมันก็ให้กระแสคลื่นแม่เหล็กไฟฟ้าที่มีกำลังสูงมาก ซึ่งคลื่นแม่เหล็กไฟฟ้านี้จะมาถึงโลกเป็นช่วงๆ
ในจังหวะที่เท่าๆ กัน และเนื่องจากมีการส่งกระแสคลื่นแม่เหล็กไฟฟ้าออกมาเป็นช่วงๆ นี้เองจึงได้ชื่อว่าพัลซาร์
ควาซาร์
ควาซาร์ถูกค้นพบเป็นครั้งแรกในช่วงคริสต์ศักราช 1960-1969 ดาวฤกษ์ประเภทนี้เป็นแหล่งที่แผ่รังสีคลื่นแม่เหล็กไฟฟ้าได้เป็นระยะทางไกลมาก เชื่อกันว่ามันเป็นเทห์ที่อยู่ไกลสุดและหมุนด้วยความเร็วราว 153,000 ไมล์ต่อวินาที ควาซาร์อาจจะเป็นแกนของกาแล็กซีใหม่ที่กำลังก่อตัวอยู่หรืออาจจะเป็นศูนย์กลางของหลุมดำก็ได้
หมู่ดาวฤกษ์และหมู่เนบิวลา (STAR CLUSTERS AND NEBULAE)
ในอวกาศเต็มไปด้วยสสารกระจายกันอยู่ ไกลกันบ้างใกล้กันบ้าง ดาวเคราะห์และดาวฤกษ์น้อยใหญ่ต่างก่อเกิดมาจากสสารระหว่างดวงดาวเหล่านั้นซึ่งจับกลุ่มกันเป็นเนบิวลาจำนวนมาก หลังจากที่ดาวฤกษ์ต่างๆ ได้ก่อเกิดขึ้นแล้วพบว่าดาวฤกษ์เหล่านั้นเกือบจะไม่อยู่โดดเดี่ยวเลย แต่จะอยู่กันเป็นหมู่ๆ หมู่ละมากดวงบ้างน้อยดวงบ้าง มองจากโลกจะเห็นสสารระหว่างดวงดาว และกลุ่มของดาวฤกษ์เหล่านี้ดูคล้ายกับเป็นหมู่เมฆหลากสีสันที่กระจัดกระจายกันอยู่
หมู่ดาวฤกษ์
พบว่าดาวฤกษ์จะไม่อยู่เดี่ยวๆ แต่จะอยู่กันเป็นหมู่ๆ ที่เป็นเช่นนี้ก็เพราะว่าดาวฤกษ์เหล่านั้นก่อเกิดมาจากมวลของสสารระหว่างดวงดาวกลุ่มเดียวกันที่เกิดจากการควบแน่นเป็นแท่งๆ ทำให้ขาดออกจากกันเป็นลูกๆ และในที่สุดก็เป็นดาวฤกษ์หลายดวงขึ้นมา ดาวฤกษ์ทุกดวงในหมู่เดียวกันจะมีอายุใกล้เคียงกันมากจนเกือบจะเท่ากันและโคจรไปในห้วงอวกาศด้วยความเร็วที่เท่ากัน หมู่ดาวฤกษ์มี 2 ประเภท ประเภทหนึ่งเป็นหมู่ดาวฤกษ์ที่ก่อเกิดมาจากการรวมหมู่ดาวฤกษ์น้อยใหญ่เข้าด้วยกันแต่ดาวฤกษ์เหล่านั้นยังอยู่กันห่างๆ พวกนี้เรียกว่า หมู่ดาวเปิด ส่วนอีกประเภทหนึ่งก่อเกิดมาจากการรวมหมู่ดาวฤกษ์น้อยใหญ่นับพันๆ ดวงเข้าด้วยกัน แต่ดาวเหล่นนั้นอยู่ชิดกันมากจนเกิดเป็นหมู่ดาวรูปทรงกลมขึ้น พวกนี้เรียกว่า หมู่ดาวทรงกลม
พไลอะดีส (Pleiades) เป็นหนึ่งในหมู่ดาวที่มีชื่อเสียง อยู่ในกลุ่มดาวทอรัส (Taurus)
หมู่เนบิวลา
โครงสร้างของหมู่เนบิวลาเป็นหมู่เมฆของก๊าซ และธุลีระหว่างดวงดาวที่อาจจะมองเห็นหรือมองไม่เห็นจากโลก ขึ้นอยู่กับความหนาแน่นของมัน เนบิวลาบางหมู่มีแสงให้เห็นเพราะดาวฤกษ์ที่อยู่ใกล้ทำให้มันอุ่นขึ้น บางหมู่ก็เป็นเพียงกลุ่มก๊าซดำมืดซึ่งไม่สามารถจะมองเห็นมันได้เช่นเดียวกับธุลีระหว่างดวงดาวที่มองไม่เห็นเพราะมันดูดซับแสงเอาไว้ แต่เราก็อนุมานได้ว่ามีเนบิวลาอยู่ตรงนั้นตรงนี้เมื่อมันเคลื่อนที่เข้าบังเทห์บางอย่างที่อยู่ในอวกาศไว้ ซึ่งเป็นเทห์ที่เรารู้ด้วยวิธีหนึ่งวิธีใดมาก่อนแล้วว่ามีอยู่จริง
ไตรฟิดเนบิวลา (Trifid nebula) ในกลุ่มดาวซาจิททาเรียส (Sagittarius)
เนบิวลาที่มีแสงสว่างสุกใสในกลุ่มดาวโอเรียน (Orion)
หมู่เนบิวลาเป็นวัตถุดิบที่เหลือจากการก่อให้เกิดดาวฤกษ์ต่าง ๆ มาแล้ว สีของหมู่เนบิวลาจะเปลี่ยนไปตามระดับของอุณหภูมิ
ดาวเคราะห์ หมายถึง ดาวที่ไม่มีแสงสว่างในตัวเอง แต่สะท้อนแสงอาทิตย์ส่องเข้าไป
ตาเรา ดาวเคราะห์ แต่ละดวง มีขนาดและจำนวนดวงจันทร์บริวารไม่เท่ากัน อยู่ห่างจากดวงอาทิตย์เป็น ระยะทางต่างกัน และดวง ต่างก็อยู่ในระบบสุริยะ โดยหมุนรอบตัวเองโคจรรอบ ดวงอาทิตย์ด้วย ความเร็วต่างกันไป จากการศึกษา เรื่องราว เกี่ยวกับดาวเคราะห์โดยใช้โลกเป็นหลักในการแบ่ง
ดาวเคราะห์ เป็นดาวที่ไม่มีแสงในตัวเอง ไม่เหมือนกับดวงอาทิตย์ หรือดาวฤกษ์ ซึ่งสามารถส่องสว่างด้วยตนเองได้ แต่เราสามารถมองเห็นดาวเคราะห์ได้ เนื่องจากการที่ดาวเคราะห์ สะท้อนแสงจากดวงอาทิตย์ เข้าสู่ตาของเรานั่นเองแม้ดาวเคราะห์ในระบบสุริยะจักรวาลของเรา จะมีถึง 8 ดวง (ไม่รวมโลก) แต่เราสามารถมองเห็นได้ ด้วยตาเปล่า เพียง 5 ดวงเท่านั้น คือ ดาวพุธ, ดาวศุกร์, ดาวอังคาร, ดาวพฤหัส และดาวเสาร์ เท่านั้น ซึ่งชาวโบราณเรียก ดาวเคราะห์ทั้งห้านี้ว่า "The Wandering Stars" หรือ "Planetes" ในภาษากรีก และเรียกดวงอาทิตย์ และดวงจันทร์ ทั้งสองดวงว่า "The Two Great Lights" ซึ่งเมื่อรวมกันทั้งหมด 7 ดวง จะเป็นที่มาของชื่อวัน ใน 1 สัปดาห์ นั่นเอง
ดาวเคราะห์ทั้ง 8 สามารถแบ่งออกเป็นกลุ่มๆ ได้ดังนี้
1. แบ่งตามลักษณะทางกายภาพ
- ดาวเคราะห์ชั้นใน (Inner or Terrestrial Planets): จะเป็นกลุ่มดาวเคราะห์ ที่อยู่ใกล้ดวงอาทิตย์มากกว่าอีกกลุ่ม เป็นดาวเคราะห์ที่เย็นตัวแล้วมากกว่า ทำให้มีผิวนอกเป็นของแข็ง เหมือนผิวโลกของเรา จึงเรียกว่า Terrestrial Planets (หมายถึง "บนพื้นโลก") ได้แก่ ดาวพุธ (Mercury), ดาวศุกร์(Venus), โลก (Earth) และดาวอังคาร (Mars) ซึ่งจะใช้แถบของ ดาวเคราะห์น้อย (Asteroid Belt) เป็นแนวแบ่ง
- ดาวเคราะห์ชั้นนอก (Outer or Jovian Planets): จะเป็นกลุ่มดาวเคราะห์ ที่อยู่ไกลดวงอาทิตย์มากกว่าอีกกลุ่ม เป็นดาวเคราะห์ที่เพิ่งเย็นตัว ทำให้มีผิวนอก ปกคลุมด้วยก๊าซ เป็นส่วนใหญ่ เหมือนพื้นผิวของดาวพฤหัส ทำให้มีชื่อเรียกว่า Jovian Planets (Jovian มาจากคำว่า Jupiter-like หมายถึง คล้ายดาวพฤหัส) ได้แก่ ดาวพฤหัส (Jupiter), ดาวเสาร์ (Saturn), ดาวยูเรนัส (Uranus), ดาวเนปจูน (Neptune)
ภาพภาพแสดงระยะทางเฉลี่ย ของดาวเคราะห์ชั้นนอก จากดวงอาทิตย์ โดยที่ Light Hours หมายถึง ระยะเวลาที่แสง เดินทางจากดวงอาทิตย์ มาถึงดาวเคราะห์นั้น (หน่วยเป็นชั่วโมง) และ Astronomical Units หมายถึง ระยะทาง ในหน่วยดาราศาสตร์ (AU)
2. แบ่งตามวงทางโคจรดังนี้ คือ
- ดาวเคราะห์วงใน (Interior planets) หมายถึงดาวเคราะห์ที่อยู่ใกล้ดวงอาทิตย์มากกว่าโลก ได้แก่ดาวพุธ และดาวศุกร์
- ดาวเคราะห์วงนอก (Superior planets) หมายถึง ดาวเคราะห์ที่อยู่ถัดจากโลกออกไป ได้แก่ ดาวอังคาร ดาวพฤหัสบดี ดาวเสาร์ ดาวยูเรนัส ดาวเนปจูน
3. แบ่งตามลักษณะพื้นผิว ดังนี้
- ดาวเคราะห์ก้อนหินได้แก่ ดาวพุธ ดาวศุกร์ โลก และดาวอังคาร ทั้ง 4 ดวงนี้มีพื้น
ผิวแข็งเป็นหิน มีชั้นบรรยากาศบางๆ ห่อหุ้ม ยกว้นดาวพุธที่อยู่ใกล้ดวงอาทิตย์ที่สุดไม่มีบรรยากาศ
- ดาวเคราะห์ก๊าซ ได้แก่ ดาวพฤหัสบดี ดาวเสาร์ ดาวยูเรนัส และดาวเนปจูน จะเป็น
ก๊าซทั่วทั้งดวง อาจมีแกนหินขนาดเล็ก อยู่ภายใน พื้นผิวจึงเป็นบรรยากาศที่ปกคลุมด้วยก๊าซมีเทน แอมโมเนีย ไฮโดรเจน และฮีเลียม
(สำหรับดาวพลูโตนั้นยังสรุปไม่ได้ว่าเป็นพวกใด เนื่องจากยังอยู่ห่างไกลจากโลกมาก)
นอกจากที่เราทราบว่า ดาวเคราะห์จะหมุนรอบตัวเอง โคจรไปรอบๆดวงอาทติย์แล้ว แกนของแต่ละดาวเคราะห์ ยังเอียง (จากแนวตั้งฉากของการเคลื่อนที่) ไม่เท่ากันอีกด้วย นอกจากนี้ เมื่อเทียบทิศทางของ การหมุนรอบตัวเอง กับการหมุนรอบดวงอาทิตย์ ของแต่ละดาวเคราะห์ พบว่า ดาวศุกร์ (Venus), ดาวยูเรนัส (Uranus) จะหมุนรอบตัวเอง แตกต่างไปจากดาวเคราะห์ดวงอื่นๆ ในระบบสุริยะจักรวาลของเรา
5.อุกกาบาต
อุกกาบาต ชื่อในภาษาอังกฤษเรียกว่า Meteorites หรือ Meteor (แปลว่าดาวตก) อุกกาบาต เป็นวัตถุที่ประกอบไปด้วยหินและเหล็ก เป็นวัตถุในอวกาศ ที่ผ่านชั้นบรรยากาศลงมาสู่โลก และตกลงมาตามแรงโน้มถ่วงของโลก ด้วยความเร็วสูงประมาณ 40-70 กิโลเมตร/วินาที ในขณะที่ตกลงมาจะเสียดสีกับชั้นบรรยากาศโลกจนเกิดความร้อนสูง และเกิดการเผาไหม้ ทำให้ก้อนอุกกาบาตเล็กลง และถูกเผาไหม้จนหมดหากมีขนาดไม่ใหญ่มากนัก แต่ในทางกลับกัน หากก้อนอุกกาบาต
มีขนาดที่ใหญ่ ก็จะเหลือพอที่มันจะกระทบกับพื้นโลก ทำให้เกิดหลุมขนาดต่างๆ และทิ้งก้อนจากนอกโลกไว้ให้เราศึกษา
อุกกาบาตส่วนใหญ่จะเป็น หิน หรือ เหล็ก หรือมีทั้งหินและเหล็กป่นกัน โดยทั่วไปแล้วจะมีลักษณะคล้ายกับก้อนหินทั่วไป หากคนไม่มีประสบการณ์หรือความรู้จะแยกไม่ออก แต่สามารถสังเกตได้ว่าหากเป็นอุกกาบาต จะมีลักษณะก้อนที่ผ่านการหลอมมาแล้ว (ก้อนจะมนๆ) เพราะระหว่างเดินทางมายังโลกเกิดแรงเสียดสี ดังที่กล่าวมาข้างต้น อีกทั้งน้ำหนักของมันหนักกว่าปกติ เพราะมีความหนาแน่นของเหล็กมากกว่าปกติ
ชนิดของอุกกาบาต มีดังนี้
C-type อุกกาบาตคาร์บอนมีสีคล้ำ มีองค์ประกอบเป็นคาร์บอน
S-type อุกกาบาตหิน มีองค์ประกอบเป็นซิลิกา
M-type อุกกาบาตโลหะ มีองค์ประกอบเป็นเหล็กและนิเกิล
ดาวหาง (Comet) คือ วัตถุชนิดหนึ่งในระบบสุริยะที่โคจรรอบดวงอาทิตย์ มีส่วนที่ระเหิดเป็นแก๊สเมื่อเข้าใกล้ดวงอาทิตย์ ทำให้เกิดชั้นฝุ่นและแก๊สที่ฝ้ามัวล้อมรอบ และทอดเหยียดออกไปภายนอกจนดูเหมือนหาง ซึ่งเป็นปรากฏการณ์จากการแผ่รังสีของดวงอาทิตย์ไปบนนิวเคลียสของดาวหาง นิวเคลียสหรือใจกลางดาวหางเป็น "ก้อนหิมะสกปรก" ประกอบด้วยน้ำแข็ง คาร์บอนไดออกไซด์ มีเทน แอมโมเนีย และมีฝุ่นกับหินแข็งปะปนอยู่ด้วยกัน มีขนาดเส้นผ่านศูนย์กลางตั้งแต่ไม่กี่กิโลเมตรไปจนถึงหลายสิบกิโลเมตร
คาบการโคจรของดาวหางมีความยาวนานแตกต่างกันได้หลายแบบ ตั้งแต่คาบโคจรเพียงไม่กี่ปี คาบโคจร 50-100 ปี จนถึงหลายร้อยหรือหลายพันปี เชื่อว่าดาวหางบางดวงเคยผ่านเข้ามาในใจกลางระบบสุริยะเพียงครั้งเดียว แล้วเหวี่ยงตัวเองออกไปสู่อวกาศระหว่างดาว ดาวหางที่มี
คาบการโคจรสั้นนั้นเชื่อว่าแต่เดิมเป็นส่วนหนึ่งอยู่ในแถบไคเปอร์ที่อยู่เลยวงโคจรของดาวเนปจูนออกไป ส่วนดาวหางที่มีคาบการโคจรยาวอาจมาจากแหล่งอื่น ๆ ที่ไกลจากดวงอาทิตย์ของเรามาก เช่นในกลุ่มเมฆออร์ตซึ่งประกอบด้วยเศษซากที่หลงเหลืออยู่จากการบีบอัดตัวของเนบิวลา
ดาวหางเหล่านี้ได้รับแรงโน้มถ่วงรบกวนจากดาวเคราะห์รอบนอก (กรณีของวัตถุในแถบไคเปอร์) จากดวงดาวอื่นใกล้เคียง (กรณีของวัตถุในกลุ่มเมฆออร์ต) หรือจากการชนกัน ทำให้มันเคลื่อน
เข้ามาใกล้ดวงอาทิตย์ ดาวเคราะห์น้อยมีกำเนิดจากกระบวนการที่ต่างไปจากนี้ อย่างไรก็ดี ดาวหางที่มีอายุเก่าแก่มากจนกระทั่งส่วนที่สามารถระเหิดเป็นแก๊สได้สูญสลายไปจนหมดก็อาจมีสภาพคล้ายคลึงกับดาวเคราะห์น้อยก็ได้ เชื่อว่าดาวเคราะห์น้อยใกล้โลกหลายดวงเคยเป็นดาวหางมาก่อน
นับถึงเดือนพฤษภาคม ค.ศ. 2009 มีรายงานการค้นพบดาวหางแล้ว 3,648 ดวง ในจำนวนนี้หลายร้อยดวงเป็นดาวหางคาบสั้น การค้นพบยังคงมีอย่างต่อเนื่อง ซึ่งส่วนที่ค้นพบแล้วเป็นแค่เศษเสี้ยวเพียงเล็กน้อยของจำนวนดาวหางทั้งหมดเท่านั้น วัตถุอวกาศที่มีลักษณะคล้ายกับดาวหางในระบบสุริยะรอบนอกอาจมีจำนวนมากกว่าหนึ่งล้านล้านชิ้น[2] ดาวหางที่สามารถมองเห็นได้ด้วยตาเปล่ามีปรากฏโดยเฉลี่ยอย่างน้อยปีละหนึ่งดวง[3] ในจำนวนนี้หลายดวงมองเห็นได้เพียงจาง ๆ เท่านั้น
ดาวหางที่สว่างมากจนสามารถสังเกตเห็นด้วยตาเปล่าได้โดยง่ายมักเรียกว่าดาวหางใหญ่ (อังกฤษ: Great Comet) นอกจากนี้ยังมีดาวหางประเภทเฉียดดวงอาทิตย์ ซึ่งมักจะแตกสลายเมื่อเข้าใกล้ดวงอาทิตย์มากๆ อันเป็นผลจากแรงโน้มถ่วงมหาศาล เป็นที่มาของฝนดาวตกต่างๆ และดาวหางอีกจำนวนนับพันดวงที่มีวงโคจรไม่เสถียร
ประวัติ
ชื่อและสัญลักษณ์
คำว่า "ดาวหาง" (comet) มีรากศัพท์จากภาษาละตินว่า (cometes) ซึ่งมาจากคำภาษากรีก komē มีความหมายว่า "เส้นผมจากศีรษะ" อริสโตเติลเป็นคนแรกที่ใช้ชื่อ komētēs กับดาวหาง เพื่อบรรยายว่ามันเป็น "ดาวที่มีผม" สัญลักษณ์ทางดาราศาสตร์สำหรับดาวหางคือ (☄) ซึ่งเป็นภาพวาดแผ่นกลมกับเส้นหางยาว ๆ เหมือนเส้นผม
วงโคจรและต้นกำเนิด
ดาวหางมีคาบการโคจรที่แตกต่างกันหลายแบบ นับตั้งแต่คาบโคจรเพียงไม่กี่ปี ไปจนถึงหลายร้อยหรือหลายพันปี ขณะที่ดาวหางบางดวงเชื่อว่าผ่านเข้ามาถึงระบบสุริยะชั้นในเพียงครั้งเดียวเท่านั้น ก่อนจะเหวี่ยงตัวเองออกไปสู่ห้วงอวกาศระหว่างดาว เชื่อกันว่า ดาวหางคาบสั้นมีต้นกำเนิดมาจากแถบไคเปอร์หรือแถบหินกระจาย[4] ซึ่งอยู่ไกลออกไปจากวงโคจรของดาวเนปจูน ดาวหางคาบยาวมาจากห้วงอวกาศที่ไกลกว่านั้น เช่นจากกลุ่มเมฆน้ำแข็งซึ่งประกอบด้วยชิ้นส่วนเศษซากที่หลงเหลืออยู่หลังจากการรวมตัวกันของเนบิวลาสุริยะ เมฆเหล่านี้เรียกว่า เมฆออร์ต ซึ่งตั้งชื่อตามนักดาราศาสตร์ แจน ออร์ต เมฆออร์ตอยู่ในระยะที่ไกลออกไปจากแถบไคเปอร์ ดาวหางเหวี่ยงตัวเองจากขอบนอกของระบบสุริยะเข้ามาหาดวงอาทิตย์ได้เนื่องจากผลกระทบจากแรงโน้มถ่วงอันยุ่งเหยิงของบรรดาดาวเคราะห์รอบนอก (ในกรณีของวัตถุจากแถบไคเปอร์) หรือจากดาวฤกษ์อื่นใกล้เคียง (ในกรณีของวัตถุจากเมฆออร์ต) หรือเป็นผลจากการกระทบกันเองระหว่างวัตถุในย่านเหล่านี้
ดาวหางแตกต่างจากดาวเคราะห์น้อย โดยสามารถสังเกตได้จากโคมา และหาง แม้ว่าดาวหางที่เก่าแก่มากๆ จะสูญเสียความสามารถในการระเหยของธาตุในตัวไปจนหมด ทำให้มีลักษณะคล้ายคลึงกับดาวเคราะห์น้อย ทั้งนี้ เชื่อกันว่าดาวเคราะห์น้อยมีกำเนิดที่แตกต่างไปจากกำเนิดของดาวหาง เพราะดาวเคราะห์น้อยน่าจะก่อตัวอยู่ในบริเวณระบบสุริยะชั้นใน มิได้มาจากส่วนนอกของระบบสุริยะ แต่จากการค้นพบไม่นานมานี้ ทำให้การแยกแยะระหว่างดาวเคราะห์น้อยกับดาวหางไม่ชัดเจนนัก
นับถึงเดือนพฤษภาคม ค.ศ. 2005 มีรายงานการค้นพบดาวหางแล้วจำนวน 3,648 ดวง ในจำนวนนี้ 1,500 ดวงเป็นดาวหางเฉียดดวงอาทิตย์ตระกูลครอทซ์ และประมาณ 400 ดวงเป็นดาวหางคาบสั้น[8] ตัวเลขนี้ยังคงเพิ่มขึ้นเรื่อยๆ อย่างไรก็ดี นี่แสดงให้เห็นถึงจำนวนประชากรเพียงส่วนเล็กน้อยของจำนวนดาวหางทั้งหมดเท่านั้น วัตถุคล้ายดาวหางทั้งหมดที่มีในระบบสุริยะชั้นนอกน่าจะมีอยู่เป็นจำนวนล้านล้านดวง จำนวนดาวหางที่สามารถมองเห็นได้ด้วยตาเปล่าเฉลี่ยแล้วมีประมาณปีละ 1 ดวง แม้ว่าส่วนมากจะค่อนข้างจางแสงมากและไม่สวยงามน่าชม เมื่อมีการพบดาวหางสว่างมากหรือสวยงามโดดเด่นในประวัติศาสตร์ ซึ่งมีผู้มองเห็นเป็นจำนวนมากๆ มักจะเรียกดาวหางเหล่านั้นว่า ดาวหางใหญ่
ลักษณะทางกายภาพ
ลักษณะทางกายภาพของดาวหางสามารถแบ่งออกได้เป็น 3 ส่วน คือ ส่วนนิวเคลียส โคม่าและหาง
นิวเคลียส ของดาวหางมีขนาดตั้งแต่ 0.5 กิโลเมตรไปจนถึง 50 กิโลเมตร ประกอบไปด้วยหินแข็ง ฝุ่น น้ำแข็ง และแก๊สแข็งเช่น คาร์บอนมอนอกไซด์ คาร์บอนไดออกไซด์ มีเทน และแอมโมเนีย องค์ประกอบนี้มักนิยมเรียกกันว่า "ก้อนหิมะสกปรก" แม้จากการสังเกตเมื่อไม่นานมานี้พบว่าพื้นผิวของดาวหางนั้นแห้งและเป็นพื้นหิน สันนิษฐานว่าก้อนน้ำแข็งซ่อนอยู่ใต้เปลือก ในดาวหางยังมีสารประกอบอินทรีย์ปรากฏอยู่ด้วย นอกเหนือจากแก๊สหลายชนิดดังกล่าวข้างต้นแล้ว ยังมีเมทานอล ไฮโดรเจนไซยาไนด์ ฟอร์มัลดีไฮด์ เอทานอล และอีเทน บางทีก็มีโมเลกุลที่ซับซ้อนมากขึ้นเช่น สารประกอบไฮโดรคาร์บอนห่วงโซ่ยาว และกรดอะมิโน นอกจากนี้ จากการศึกษาดาวหางในย่านความถี่อัลตราไวโอเลต พบว่ามีชั้นของไฮโดรเจนห่อหุ้มดาวหางอีกชั้นหนึ่ง ไฮโดรเจนเหล่านี้เกิดจากไอน้ำที่แตกตัวอันเนื่องมาจากรังสีจากดวงอาทิตย์ นิวเคลียสของดาวหางมีรูปร่างบิดเบี้ยวไม่เป็นทรง เพราะมันไม่มีมวล (ซึ่งแปรผันกับแรงโน้มถ่วง) มากพอที่จะกลายเป็นทรงกลมได้
ในระบบสุริยะรอบนอก ดาวหางจะคงสภาพแช่แข็งและไม่สามารถสังเกตได้จากโลกหรือสังเกตได้ยากมาก เนื่องจากมันมีขนาดเล็กมาก (แต่ก็มีนิวเคลียสดาวหางบางดวงในแถบไคเปอร์ที่สามารถมองเห็นได้) เมื่อดาวหางเคลื่อนเข้ามาสู่ระบบสุริยะรอบใน ใกล้ดวงอาทิตย์มากขึ้น ความร้อนจากดวงอาทิตย์จะทำให้น้ำแข็งและแก๊สแข็งระเหิดเป็นไอ และปล่อยแก๊สออกมาเกาะกลุ่มกับฝุ่นผงในอวกาศกลายเป็นม่านทรงกลมขนาดมหึมาล้อมรอบนิวเคลียส เรียกว่า โคม่า ซึ่งโคม่าอาจมีขนาดเส้นผ่านศูนย์กลางถึงหลายล้านกิโลเมตรก็ได้ แรงดันจากรังสีที่แผ่จากดวงอาทิตย์และลมสุริยะจะกระทำต่อโคม่านี้ ทำให้เกิดเป็นละอองขนาดใหญ่ลากยาวออกไปเป็นหาง ในทิศทางตรงกันข้ามกับดวงอาทิตย์
กระแสฝุ่นและแก๊สทำให้เกิด "หาง" ในรูปแบบที่แตกต่างกัน คือ หางแก๊ส หรือ หางพลาสมา หรือ หางไอออน ประกอบด้วยไอออน และโมเลกุลที่ส่องสว่างโดยการเรืองแสง ถูกผลักออกไปโดยสนามแม่เหล็กในลมสุริยะ ดังนั้นความผันแปรของลมสุริยะจึงมีผลต่อการเปลี่ยนรูปร่างของหางแก๊สด้วย หางแก๊สจะอยู่ในระนาบวงโคจรของดาวหาง และชี้ไปในทิศเกือบตรงข้ามดวงอาทิตย์พอดี หางอีกชนิดหนึ่งคือ หางฝุ่น ประกอบด้วยฝุ่นหรืออนุภาคอื่น ๆ ที่เป็นกลางทางไฟฟ้า ถูกผลักออกจากดาวหางด้วยแรงดันจากการแผ่รังสี กลายเป็นหางที่มีรูปทรงห่อโค้งไปด้านหลัง ในขณะที่ดาวหางเข้าใกล้ดวงอาทิตย์ หางของมันอาจยาวได้ถึงหลายร้อยล้านกิโลเมตร ความยาวของหางแก๊สเคยบันทึกได้สูงสุดมากกว่า 1 หน่วยดาราศาสตร์ (ประมาณ 150 ล้านกิโลเมตร)
ทั้งโคม่าและหางจะเรืองแสงได้จากดวงอาทิตย์ และสามารถมองเห็นได้จากโลกเมื่อดาวหางเคลื่อนเข้ามาสู่ระบบสุริยะชั้นใน ฝุ่นสะท้อนแสงอาทิตย์ได้โดยตรง ขณะที่กลุ่มแก๊สเรืองแสงได้ด้วยการแตกตัวเป็นไอออน ดาวหางส่วนใหญ่จะมีความสว่างเพียงจาง ๆ ซึ่งจะมองเห็นได้โดยใช้กล้องโทรทรรศน์ แต่ก็มีดาวหางจำนวนหนึ่งที่มีความสว่างพอจะมองเห็นได้ด้วยตาเปล่า ผ่านเข้ามาใกล้ทุก ๆ ทศวรรษ บางครั้งก็มีการระเบิดใหญ่ขึ้นแบบฉับพลันในกลุ่มแก๊สและฝุ่น ทำให้ขนาดของโคม่าขยายตัวขึ้นมากชั่วขณะหนึ่ง เหตุการณ์นี้เคยเกิดขึ้นในปี พ.ศ. 2550 กับ
ดาวหางโฮมส์
ข้อมูลที่น่าพิศวงคือ นิวเคลียสของดาวหางนับเป็นวัตถุอวกาศที่มืดที่สุดพวกหนึ่งในบรรดาวัตถุในระบบสุริยะ ยานจอตโตพบว่านิวเคลียสของดาวหางฮัลเลย์มีความสามารถสะท้อนแสงเพียง 4% เท่านั้น ส่วนยานดีปสเปซ 1 พบว่าพื้นผิวของดาวหางโบร์เรลลีสามารถสะท้อนแสงได้ราว 2.4 ถึง 3% ขณะที่พื้นผิวยางมะตอยสามารถสะท้อนแสงได้ 7% คาดกันว่าสารประกอบอินทรีย์อันซับซ้อนของนิวเคลียสเหล่านั้นเป็นวัสดุที่มีพื้นผิวมืด ความร้อนจากแสงอาทิตย์ทำให้องค์ประกอบที่ระเหยง่ายกลายเป็นไอหายไป เหลือแต่สารประกอบอินทรีย์แบบห่วงโซ่ยาวซึ่งเป็นสสารมืดเหมือนอย่างน้ำมันดินหรือน้ำมันดิบ พื้นผิวที่มืดของดาวหางทำให้มันสามารถดูดซับความร้อนได้ดีและยิ่งระเหิดได้ง่ายขึ้น
ในปี พ.ศ. 2539 มีการค้นพบว่าดาวหางปลดปล่อยรังสีเอกซ์ออกมาด้วย[16] ซึ่งทำให้เหล่านักวิจัยพากันประหลาดใจ เพราะไม่เคยคาดกันมาก่อนว่าจะมีการปล่อยรังสีเอกซ์จากดาวหาง เชื่อว่ารังสีเอกซ์เกิดจากปฏิกิริยาระหว่างดาวหางกับลมสุริยะ ขณะที่ประจุไฟฟ้าศักย์สูงเคลื่อนผ่านบรรยากาศรอบดาวหางแล้วเกิดปะทะกับอะตอมและโมเลกุลของดาวหาง ในการปะทะนั้นไอออนได้จับกับอิเล็กตรอนจำนวนหนึ่ง แล้วปล่อยรังสีเอกซ์รวมถึงโฟตอนที่ความถี่ระดับอัลตราไวโอเลตไกล
ลักษณะของวงโคจร
ดาวหางส่วนใหญ่มีวงโคจรเป็นวงรีที่เรียวมาก ๆ โดยมีปลายข้างหนึ่งของวงรีเข้าใกล้ดวงอาทิตย์ ส่วนปลายอีกข้างหนึ่งทอดไกลออกไปยังด้านนอกของระบบสุริยะ สามารถแบ่งประเภทของดาวหางได้เป็นกลุ่มตามคาบการโคจร ยิ่งดาวหางมีคาบการโคจรยาวเท่าใด รูปวงรีก็จะยิ่งเรียวมากขึ้น
ดาวหางคาบสั้น (Short-period comets) เป็นดาวหางที่มีคาบการโคจรรอบดวงอาทิตย์น้อยกว่า 200 ปี โดยทั่วไปมักมีระนาบวงโคจรใกล้เคียงกับระนาบสุริยวิถี และเคลื่อนที่ไปในทิศทางเดียวกับดาวเคราะห์ จุดปลายของวงรีอีกด้านที่ไกลจากดวงอาทิตย์ที่สุดมักอยู่ในแถบของดาวเคราะห์รอบนอกของระบบสุริยะ (ตั้งแต่ดาวพฤหัสบดีออกไป) ตัวอย่างเช่น ดาวหางฮัลเลย์มีจุดไกลที่สุดจากดวงอาทิตย์อยู่ในบริเวณวงโคจรของดาวเนปจูน ส่วนดาวหางที่มีคาบโคจรสั้นกว่านั้นเช่นดาวหางเองเคอ (Comet Encke) มีจุดไกลที่สุดเพียงไม่เกินวงโคจรของดาวพฤหัสบดี ดาวหางคาบสั้น สามารถแบ่งได้เป็น 2 กลุ่มคือ กลุ่มดาวพฤหัสบดี (คาบโคจรไม่เกิน 20 ปี) และกลุ่มดาวหางฮัลเลย์ (คาบโคจรระหว่าง 20 ถึง 200 ปี)
ดาวหางคาบยาว (Long-period comets) มีความรีของวงโคจรมากกว่า และมีคาบโคจรตั้งแต่ 200 ปีขึ้นไปจนถึงหลายพันหรือหลายล้านปี (ตามนิยามแล้ว ดาวหางเหล่านี้จะต้องยังคงอยู่ภายใต้แรงโน้มถ่วงของดวงอาทิตย์ ดาวหางที่ถูกดีดออกจากระบบสุริยะหลังจากเคลื่อนผ่านดาวเคราะห์ขนาดใหญ่จะไม่นับว่าเป็นดาวหางที่มี "คาบโคจร" อีกต่อไป) จุดปลายของวงรีด้านที่ไกลจากดวงอาทิตย์จะอยู่นอกเขตแดนดาวเคราะห์รอบนอกออกไปอีก และระนาบโคจรของดาวหางกลุ่มนี้อาจไม่อยู่ในระนาบเดียวกับสุริยวิถีก็ได้
ดาวหางแบบปรากฏครั้งเดียว (Single-apparition comets) มีลักษณะคล้ายคลึงกับดาวหางคาบยาว แต่มักมีเส้นทางแบบพาราโบลาหรือไฮเพอร์โบลา ทำให้มันผ่านเข้ามาในระบบสุริยะเพียงครั้งเดียว
นักวิชาการบางคนใช้คำว่า "ดาวหางรายคาบ" (Periodic comet) สำหรับดาวหางใด ๆ ที่มีวงโคจรเป็นวงรี (ได้แก่ทั้งดาวหางคาบสั้นและดาวหางคาบยาว) แต่บางคนก็นับแต่เพียงดาวหางคาบสั้นเท่านั้น ในทำนองเดียวกัน แม้คำว่า "ดาวหางแบบไม่มีคาบ" (non-periodic comet) จะมีความหมายเดียวกับดาวหางแบบปรากฏครั้งเดียว แต่นักวิชาการบางคนก็ใช้ในความหมายรวมถึงดาวหางคาบยาว หรือคาบยาวนานกว่า 200 ปีด้วย ในระยะหลังมีการค้นพบแถบดาวหางหลัก (Main-belt comets) ซึ่งทำให้เกิดการแบ่งประเภทเพิ่มขึ้นอีกหนึ่งชนิด ดาวหางในกลุ่มนี้มีวงโคจรค่อนข้างกลมมากกว่ากลุ่มอื่น ๆ ในระยะเดียวกันกับแถบดาวเคราะห์น้อย
เมื่อดูจากลักษณะของวงโคจร เชื่อกันว่าดาวหางคาบสั้นน่าจะมีต้นกำเนิดมาจากแถบไคเปอร์ซึ่งอยู่ในห้วงอวกาศแถบวงโคจรของดาวเนปจูน ส่วนดาวหางคาบยาวน่าจะมาจากแหล่งที่ไกลกว่านั้น เช่นในกลุ่มเมฆออร์ต (ตั้งชื่อตามนักดาราศาสตร์ชาวเนเธอร์แลนด์ เจน เฮนดริก ออร์ต ผู้ค้นพบ) เชื่อกันว่า มีวัตถุลักษณะคล้ายดาวหางจำนวนมากโคจรรอบดวงอาทิตย์เป็นวงเกือบกลมในระยะวงโคจรราว ๆ นั้นอยู่แล้ว แต่อิทธิพลจากแรงโน้มถ่วงของดาวเคราะห์รอบนอก (กรณีแถบไคเปอร์) หรือแรงโน้มถ่วงจากดวงดาวอื่น (กรณีกลุ่มเมฆออร์ต) อาจส่งผลโดยบังเอิญทำให้วัตถุอวกาศในเขตนั้นเปลี่ยนวงโคจรกลายเป็นวงรีและเคลื่อนเข้าหาดวงอาทิตย์ จนกลายมาเป็นดาวหางที่เรามองเห็น แต่ทว่าการปรากฏของดาวหางใหม่ ๆ ตามสมมุติฐานข้อนี้ยังไม่อาจคาดการณ์ได้
วงโคจรอันเป็นวงรีทำให้ดาวหางผ่านเข้าไปใกล้ดาวเคราะห์ขนาดใหญ่บ่อยครั้ง ทำให้วงโคจรของดาวหางบิดเพี้ยนไป ดาวหางคาบสั้นมักมีจุดปลายสุดของวงโคจรด้านไกลดวงอาทิตย์อยู่ในรัศมีวงโคจรของดาวเคราะห์ขนาดใหญ่ เช่นดาวพฤหัสบดี ซึ่งมีมวลรวมมากกว่าดาวเคราะห์ที่เหลือทั้งหมดรวมกัน ในบางครั้งดาวหางคาบยาวก็อาจถูกแรงโน้มถ่วงรบกวนเส้นทางโคจรจนทำให้กลายมาเป็นดาวหางคาบสั้นได้ (ดาวหางฮัลเลย์อาจเป็นตัวอย่างหนึ่งของกรณีนี้)
การเฝ้าสังเกตการณ์ในยุคแรกไม่ค่อยพบดาวหางที่มีวงโคจรแบบไฮเพอร์โบลา (หรือดาวหางแบบไม่มีคาบ) แต่ไม่มีดาวหางดวงใดจะรอดพ้นแรงโน้มถ่วงรบกวนจากดาวพฤหัสบดีไปได้ หากดาวหางเคลื่อนไปในห้วงอวกาศระหว่างดาว มันจะต้องเคลื่อนที่ไปด้วยความเร็วในระดับเดียวกับความเร็วสัมพัทธ์ของดาวที่อยู่ใกล้ดวงอาทิตย์ (ระดับหลายสิบกิโลเมตรต่อวินาที) เมื่อวัตถุเหล่านั้นเข้ามาในระบบสุริยะก็มักจะมีวิถีโคจรเป็นแบบไฮเพอร์โบลา จากการคำนวณอย่างหยาบ ๆ พบว่าจะมีดาวหางที่มีวงโคจรแบบไฮเพอร์โบลาเกิดขึ้นประมาณศตวรรษละสี่ดวง
จจุบัน ดาวหางรายคาบที่ค้นพบในศตวรรษที่แล้วจำนวนหนึ่งได้ "สูญหายไป" แต่วงโคจรของมันเท่าที่ตรวจวัดยังไม่ละเอียดดีพอสำหรับทำนายการปรากฏตัวในอนาคต อย่างไรก็ดี มีการค้นพบ "ดาวหางใหม่" บางดวง และเมื่อคำนวณวงโคจรของมันแล้ว อาจเป็นไปได้ว่ามันคือดาวหางเก่าที่ "สูญหายไป" นั่นเอง ตัวอย่างเช่นดาวหางเทมเพล-ซวิฟท์-ลีเนียร์ ซึ่งค้นพบในปี พ.ศ. 2412 (ค.ศ. 1869) แต่ไม่สามารถสังเกตการณ์ได้อีกหลังจากปี พ.ศ. 2451 เนื่องจากการรบกวนวงโคจรของดาวพฤหัสบดี กลับมาปรากฏตัวอีกครั้งโดยบังเอิญโดยโครงการลีเนียร์ (LINEAR; Lincoln Laboratory Near-Earth Asteroid Research project : โครงการความร่วมมือระหว่างกองทัพอากาศสหรัฐฯ, นาซา และเอ็มไอที) ในปี พ.ศ. 2544
จุดจบของดาวหาง
โดยทั่วไปเมื่อดาวหางโคจรรอบดวงอาทิตย์ไปนานเข้า องค์ประกอบในนิวเคลียสที่ระเหิดง่ายจะค่อย ๆ ระเหิดหายไปจนหมด ดาวหางอาจสลายตัวกลายเป็นฝุ่นผง หรือกลายเป็นเศษซากก้อนหินดำมืด มีสภาพคล้ายกับดาวเคราะห์น้อย ดาวหางบางดวงก็แตกออกเป็นเสี่ยง ๆ ตัวอย่างเช่นดาวหางชวาสมานน์-วัคมานน์ 3 ที่แตกเป็นเสี่ยงเมื่อปี พ.ศ. 2549 การแตกกระจายของดาวหางเกิดได้จากแรงโน้มถ่วงมหาศาลจากดวงอาทิตย์หรือดาวเคราะห์ขนาดใหญ่ ทำให้เกิด
"การระเบิด" ขององค์ประกอบที่ระเหิดได้ หรืออาจเกิดจากสาเหตุอื่นที่ยังไม่มีคำอธิบายที่ชัดเจน
ดาวหางบางดวงมีจุดจบที่อลังการกว่านั้น เช่นพุ่งไปตกบนดวงอาทิตย์ หรือพุ่งเข้าชนดาวเคราะห์หรือวัตถุอวกาศอื่น ๆ เชื่อกันว่าเหตุการณ์ที่ดาวหางพุ่งชนดาวเคราะห์หรือดวงจันทร์เกิดขึ้นเป็นปกติมานานแล้วในช่วงเริ่มต้นของระบบสุริยะ หลุมบ่อขนาดใหญ่มากมายบนดวงจันทร์ก็สันนิษฐานว่าเกิดจากการพุ่งชนของดาวหาง การพุ่งชนของดาวหางครั้งล่าสุดเกิดขึ้นเมื่อปี พ.ศ. 2537 เมื่อดาวหางชูเมกเกอร์-เลวี 9 แตกเป็นเสี่ยงๆ แล้วพุ่งเข้าชนดาวพฤหัสบดี
ดาวหางและดาวเคราะห์น้อยหลายดวงเคยพุ่งชนโลกเมื่อยุคเริ่มแรก นักวิทยาศาสตร์จำนวนมากเชื่อว่าการที่ดาวหางมากมายพุ่งชนโลกในวัยเยาว์ (เมื่อประมาณ 4 พันล้านปีก่อน) นำพาน้ำจำนวนมหาศาลซึ่งปัจจุบันกลายเป็นมหาสมุทรที่ปกคลุมผิวโลก แต่นักวิจัยบางคนยังตั้งข้อสงสัยต่อทฤษฎีนี้ การตรวจพบโมเลกุลอินทรีย์บนดาวหางทำให้เกิดแนวคิดขึ้นว่า ดาวหางหรือดาวตกอาจเป็นตัวนำ ชีวิต มายังโลก ปัจจุบันมีดาวหางจำนวนมากที่มีวงโคจรเข้าใกล้โลก แต่กระนั้นโอกาสที่โลกจะถูกชนด้วยดาวเคราะห์น้อยยังมีความเป็นไปได้มากกว่า
นอกจากนี้ยังมีแนวคิดว่า นานมาแล้วดาวหางอาจเคยพุ่งชนดวงจันทร์ ทำให้เกิดน้ำปริมาณมากบน ดวงจันทร์ของโลก ซึ่งปัจจุบันอาจหลงเหลืออยู่ในรูปของน้ำแข็งบนดวงจันทร์
การตั้งชื่อดาวหาง
ตลอดสองร้อยปีที่ผ่านมา มีการตั้งชื่อให้แก่ดาวหางอยู่หลายวิธี เนื่องจากยังไม่มีระบบวิธีการตั้งชื่ออย่างเป็นทางการ ก่อนถึงต้นคริสต์ศตวรรษที่ 20 ดาวหางจะถูกเรียกชื่อตามปีที่มีการค้นพบ และบางครั้งก็มีคำขยายเพิ่มเติมสำหรับดาวหางที่สว่างเป็นพิเศษ เช่น "ดาวหางใหญ่แห่งปี 1680" (ดาวหางเคียช : Kirch]) "ดาวหางใหญ่ในเดือนกันยายน 1882" และ "ดาวหางที่เห็นได้ในยามกลางวันปี 1910" (หรือ "ดาวหางใหญ่เดือนมกราคม 1910") เป็นต้น ในเวลาต่อมา เอ็ดมันด์ ฮัลเลย์ สามารถพิสูจน์ได้ว่าดาวหางที่ปรากฏในปี ค.ศ. 1531, 1607 และ 1682 เป็นดาวหางดวงเดียวกัน และสามารถทำนายได้อย่างถูกต้องว่ามันจะหวนมาเยือนโลกอีกครั้งในปี ค.ศ. 1759 หลังจากนั้นดาวหางดวงนั้นก็ได้ชื่อว่า ดาวหางฮัลเลย์ ด้วยวิธีเดียวกันนี้ ดาวหางที่สามารถทำนายรอบโคจรได้ในเวลาต่อมาเป็นดวงที่ 2 และ 3 จึงได้ชื่อว่า ดาวหางเองเคอ และดาวหางบีลา (Biela) ตามชื่อสกุลของนักดาราศาสตร์ที่คำนวณวงโคจรได้ถูกต้อง แทนชื่อเก่าดั้งเดิมของมัน หลังจากนั้นดาวหางรายคาบก็มักถูกตั้งชื่อตามนามสกุลของผู้ค้นพบ ยกเว้นดาวหางที่ปรากฏตัวเพียงครั้งเดียวยังคงมีชื่อเรียกเป็นปีที่ปรากฏตัวอยู่ดังเดิม
ต้นคริสต์ศตวรรษที่ 20 วิธีการตั้งชื่อดาวหางตามชื่อผู้ค้นพบกลายเป็นวิธีสามัญทั่วไป และยังคงใช้เรื่อยมาจนถึงปัจจุบัน ดาวหางหนึ่งดวงจะตั้งชื่อตามผู้ค้นพบได้ถึงสามคน ในช่วงหลัง ๆ มีดาวหางหลายดวงที่ถูกค้นพบโดยเครื่องมือที่ควบคุมด้วยทีมนักดาราศาสตร์หลายคน ในกรณีเช่นนี้อาจตั้งชื่อดาวหางตามชื่อเครื่องมือตรวจวัดนั้นก็ได้ ตัวอย่างเช่น ดาวหางไอราส-อาราคี-อัลคอค (IRAS-Araki-Alcock) ค้นพบโดยทั้งดาวเทียมไอราส นักดาราศาสตร์สมัครเล่นชื่อ เจนิชี อาราคี (Genichi Araki) และจอร์จ อัลคอค (George Alcock) ในอดีตถ้าผู้ค้นพบหรือกลุ่มผู้ค้นพบมีการค้นพบดาวหางมากกว่าหนึ่งดวง จะตั้งชื่อดาวหางตามด้วยชื่อผู้ค้นพบและต่อท้ายด้วยหมายเลข (สำหรับดาวหางรายคาบเท่านั้น) เช่น ดาวหางชูเมกเกอร์-เลวี 1-9 เป็นต้น แต่ในปัจจุบันมีดาวหางจำนวนมากที่ค้นพบโดยเครื่องมือทางดาราศาสตร์ต่าง ๆ (เช่นในเดือนสิงหาคม พ.ศ. 2548
ยานโซโฮค้นพบดาวหางเป็นดวงที่ 1,000) ทำให้วิธีการตั้งชื่อแบบนี้ไม่เหมาะสม แต่ก็ยังไม่มีการกำหนดกฎเกณฑ์อื่นใดขึ้นมาแทนที่เพื่อระบุชื่อเฉพาะให้แก่ดาวหาง แต่มีการใช้ระบบกำหนดชื่อชั่วคราวขึ้นมาใช้เพื่อป้องกันความสับสน
แต่เดิมมาจนถึงปี พ.ศ. 2537 (ค.ศ. 1994) ดาวหางที่ค้นพบใหม่จะได้รับชื่อชั่วคราวไปก่อนโดยใช้เลขปีคริสต์ศักราชที่ค้นพบ ตามด้วยอักษรโรมันตัวเล็ก เรียงตามลำดับการค้นพบในปีนั้น ๆ (ตัวอย่างเช่น ดาวหาง 1969 ไอ (หรือดาวหางเบนเน็ต) เป็นดาวหางดวงที่ 9 ที่ค้นพบในปี ค.ศ. 1969) เมื่อดาวหางผ่านจุดใกล้ดวงอาทิตย์ที่สุด และสามารถคำนวณวงโคจรของมันได้แล้ว ดาวหางดวงนั้นจะได้รับชื่อถาวรเป็นเลขปีที่เข้าใกล้ดวงอาทิตย์มากที่สุด ตามด้วยเลขโรมันบอกลำดับการเข้าใกล้ดวงอาทิตย์ในปีนั้น ๆ ดังนั้นดาวหาง 1969i จึงกลายไปเป็นดาวหาง 1970 II เนื่องจากมันเป็นดาวหางดวงที่สองที่เข้าใกล้ดวงอาทิตย์มากที่สุดในปี ค.ศ. 1970
แต่เมื่อมีการค้นพบดาวหางมากขึ้นเรื่อย ๆ วิธีการเช่นนี้จึงยุ่งยากมาก ในปี ค.ศ. 1994 สหพันธ์ดาราศาสตร์สากลจึงอนุมัติระบบการตั้งชื่อดาวหางแบบใหม่ โดยดาวหางจะมีชื่อเป็นเลขปีที่ค้นพบตามด้วยตัวอักษรระบุปักษ์ของเดือนที่ค้นพบ และหมายเลขบอกลำดับการค้นพบในเดือนนั้น (เป็นระบบการตั้งชื่อที่คล้ายคลึงกับระบบการตั้งชื่อดาวเคราะห์น้อย) ดังนั้นดาวหางดวงที่สี่ที่ค้นพบในปักษ์หลังของเดือนกุมภาพันธ์ พ.ศ. 2549 จึงมีชื่อว่า 2006 D4 ทั้งนี้อาจมีอักษรนำเพื่อระบุประเภทของดาวหางนั้น
>>>>>>>>กลับ สาระบัญ<<<<<<<<
ไม่มีความคิดเห็น:
แสดงความคิดเห็น